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A Striking Result of Montalbán and Shore

We wish to extend the results of [2] to third-order arithmetic. A central question in
Reverse Mathematics is the characterisation of the proof-theoretic strength of the-
orems of mathematics. Determinacy axioms are on their side powerful statements
whose proof-theoretic strength grows fast.
Theorems 1 & 2 [2] : For every n ≥ 1,

∆1
n+2-CA0 ̸≥ (Π0

3)n-Det < Π1
n+2-CA0.

A model of Γ-CA0 is a structure M = (M, S, +, ×, <, 0, 1, ∈), with (M, +, ×, <, 0, 1)
being an ordered semi-ring, M a set of numbers and S ⊆ P(M) the collection of
subsets of numbers, that satisfy the axiom of Γ comprehension and Γ induction. The
backbone of the zoo of Reverse Mathematics is

RCA0 < WKL0 < ACA0 < ATR0 < Π1
1-CA0 < · · · < Π1

n+1-CA0 < · · · < Z2.

To have a set-theoretic equivalent in mind, in L, the minimal model of ∆1
n+2-CA0 has

the same set S than Lα1
n+1

, the minimal level α so that

Lα |= KPn+1 := KP + ∆n-collection + Σn-separation (n ≥ 1).

Determinacy Axioms

Two players, I and II give natural numbers one after the other for an infinite amount
of time. Once each move has been stated, it becomes common knowledge, making it a
perfect information game. The legal moves are represented by the tree T , containing
all legal finite positions of the games. Player I wins iff the sequence of their alternative
moves belongs to X ⊆ [T ], otherwise player II wins.

A strategy σ is winning for player I (resp. II) if [σ] ⊆ X (resp. [σ] ⊆ X̄). A
game G(T, X) is said to be determined if there exists a strategy for one of the two
players. Using the natural topology on [T ], one can states the axiom of determinacy
restricted to a class Γ of definable sets as Γ-DetT : ∀X ∈ Γ, G(T, X) is determined.
A theorem of Martin [1] states for all α < ω1

ZFC− + “Pα(ω) exists” ̸≥ Π0
α+4-Det ≤ ZFC− + “Pα+1(ω) exists”,

(with ZFC− is ZFC deprived from power set axiom P0(ω) = ω).

We define the n-th difference hier-
archy level (Π0

3)n by the following
construction on the n-th Π0

3 sets,

(A0\(A1 \ (A2 \ · · ·
· · · (An−2 \ An−1) · · · ))).

Results

The goal of the present paper is to extend the result of Montalbán and Shore in third-order
arithmetic. In future work, we plan to address questions of tightening the bounds as well as
the limits of real determinacy in third-order arithmetic. Let us denote by α2

n the least ordinal
such that Lα2

n
|= KPn + P(ω) exists. Our result is the following:

Lα2
n

̸|= (Π0
4)n-Det but Lα2

n+1
|= (Π0

4)n-Det (n ≥ 2),

where within countable case, we had

Lα1
n+1

̸|= (Π0
3)n-Det but Lα1

n+2
|= (Π0

3)n-Det (n ≥ 1).

The way we prove the first result is by devising a (Π0
4)n game such that

1. If player I plays the theory of Lα2
n
, she wins;

2. If player I does not play the theory of Lα2
n

but player II does, then player II wins.

With each played theory we associate his term model M::. The conditions

• C::0 check if M:: is a minimal omega model of the theory not included in the other;

• C::1 check that there is no descending sequence of countable non-standard codes;

• C::(1 + k) check that an induction hypothesis ⋆k−1 is witnessed and there is no ∆0(Σk−1)
descending sequence in M::.

Not all rules can be satisfied since the existence of ⋆k−1-witnesses implies that M:: has a strict
sub-model of KPk + P(ω) exists. So the satisfaction of C::[0 : n] would contradict C::0.

The Peculiarity of the Uncountable Case

Crucially in the statement of the condition C::(1 + k), we need to identify the well-
founded, common part of the two models played. A major hindrance in generalising
the definition of Montalbán and Shore occurs from the possible positions of ω1, the
highest cardinal in both models. They are three cases.

1. Both ω1 belongs to Lα and the generalisation goes smoothly;

2. Only one of the ω1 is out of Lα, then when comparing the ordinals, we keep
looking at ordinals under the least countable non-standard code when consid-
ering the ones of the model to whom belong this ω1;

3. Both ω1 are out of Lα, then for both model, we only compare ordinals under
the least countable non-standard code of each model.

Moreover, by overspill, the extra condition imply that Lα is a model of P(ω) exists.

Remarks and Exact Bounds

The second part of our result is an application of Martin’s unraveling, combined
with a rather immediate adaptation of Martin’s original proof of the determinacy of
the hierarchy of differences of Π0

3 sets. By doing so, one of the original quantifiers
become bounded, which explain that less comprehension is needed. Our results can
be generalised to any level of the Borel hierarchy. By extending our method to the
second paper of Montalbán and Shore [3], we were able to answer to a question of
Pachecho and Yokoyama [4]. We settled for all i < ω

1. ∀n (Π0
3+i)(n+1)-Det is equivalent to Π1

3-Ref(ZFCi);

2. ∀m (Π0
m)-Det is equivalent to Π1

3-Ref({ZFCm}m<ω).
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